Telegram Group & Telegram Channel
چه قدر تا بی‌کارشدن بک‌اندی‌ها فاصله داریم؟

عمده استفاده برنامه‌نویس‌ها از LLM‌ها در سطح پیاده‌سازی فانکشن‌ها و یا ادیت تکه‌های مختلف کد بوده. اما آیا LLM‌ها می‌تونند یک پروژه رو به صورت انتها به انتها و ماژولار و البته با کیفیت مناسب پروداکشن پیاده‌سازی کنند؟ یک کار جالبی اومده که سعی کرده برای همین نیازمندی پیاده‌سازی انتها به انتها پروژه‌های بک‌اندی بنچمارک ارائه بده. این بنچمارک که BaxBench نام داره، ۲۸ تا سناریو نیازمندی تعریف کرده و تلاش کرده با ۱۴ تا فریمورک (از شش زبان مختلف) مختلف این نیازمندی‌های رو با LLM‌ها پیاده‌سازی کنه (یعنی سرجمع ۳۹۲ تسک می‌شه). از اونور هم ۱۱ تای LLM‌ پیشرو فعلی رو روی این تسک‌ها گذاشته و خواسته که کدشون رو تولید کنند. برای ارزیابی اما چه کرده؟ دو جهت ارزیابی رو در پیش گرفته، یک جهت فانکشنال تست‌هایی که تعریف کرده و روی کدهای خروجی تست می‌گیره تا ببینه آیا سیستم درست پیاده‌سازی شده یا نه، و جهت دیگه هم این که از نظر امنیتی و آسیب پذیری، کدهای نوشته‌شده رو سنجیده. برای این کار برای هر سناریو، از یک متخصص امنیت خواسته تا اتک‌های ممکن رو تعریف کنه و سپس اونها رو سیستم‌های خروجی تولیدشده اجرا گرفتند تا ببیند وضعشون چه طوریه. پس در نهایت کد خروجی LLM‌ می‌تونه سه وضعیت داشته باشه: اصلا درست نباشه، درست باشه ولی آسیب‌پذیری امنیتی داشته باشه و در نهایت هم درست باشه و هم عاری از آسیب‌پذیری.

نتایج LLM‌های مختلف هم روی این بنچمارک که بهترین‌‌شون که o3-mini بوده باشه حدود ۶۰ درصد از تسک‌ها رو تو فانکشنال تست پاس شده که البته نصف همین رقمش هم دچار آسیب پذیری امنیتی بودند و یعنی o3-mini روی این بنچمارک سرجمع فقط ۳۵.۲ درصد تسک‌ها رو براشون خروجی درست و عاری از آسیب‌پذیری تونسته تولید کنه (البته یک ablation جالبی که زده این بوده که اومده در پرامپت‌دهی به LLM بهش نکات امنیتی رو گوشزد کرده و همینجوری تونسته درصد کدهای درست امن تولیدشده رو بیشتر کنه) البته o3-mini نه بهترین در تولید کد بوده و نه بهترین در امنیت، بلکه شبیه وزنه‌بردارها تونسته در مجموع بهترین باشه. در واقع ممکنه یک مدل در تولید کد عملکرد خوبی داشته باشه ولی در امنیت اون کد نه و بالعکس.

اما اکسپریمنت‌هاش از مقایسه اونوری، یعنی عملکرد روی فریمورک‌های مختلف، هم مطابق انتظار این شکلی بوده که LLM ها روی فریمورک‌هایی که شهرت و محبوبیت کمتری دارند و البته اونایی که برای راه‌اندازی یک http server نیازمند پیاده‌سازی در چند فایل هستند عملکرد پایین‌تری دارند.

در کل، از این پس احتمالا بنچمارک‌های انتها به انتهای بیشتری حول و حوش موضوع خودکارسازی توسعه نرم‌افزار خواهیم دید. روزهای جالبی در انتظاره البته نه برای برنامه‌نویس‌ها

لینک:
https://baxbench.com/

@nlp_stuff



tg-me.com/nlp_stuff/362
Create:
Last Update:

چه قدر تا بی‌کارشدن بک‌اندی‌ها فاصله داریم؟

عمده استفاده برنامه‌نویس‌ها از LLM‌ها در سطح پیاده‌سازی فانکشن‌ها و یا ادیت تکه‌های مختلف کد بوده. اما آیا LLM‌ها می‌تونند یک پروژه رو به صورت انتها به انتها و ماژولار و البته با کیفیت مناسب پروداکشن پیاده‌سازی کنند؟ یک کار جالبی اومده که سعی کرده برای همین نیازمندی پیاده‌سازی انتها به انتها پروژه‌های بک‌اندی بنچمارک ارائه بده. این بنچمارک که BaxBench نام داره، ۲۸ تا سناریو نیازمندی تعریف کرده و تلاش کرده با ۱۴ تا فریمورک (از شش زبان مختلف) مختلف این نیازمندی‌های رو با LLM‌ها پیاده‌سازی کنه (یعنی سرجمع ۳۹۲ تسک می‌شه). از اونور هم ۱۱ تای LLM‌ پیشرو فعلی رو روی این تسک‌ها گذاشته و خواسته که کدشون رو تولید کنند. برای ارزیابی اما چه کرده؟ دو جهت ارزیابی رو در پیش گرفته، یک جهت فانکشنال تست‌هایی که تعریف کرده و روی کدهای خروجی تست می‌گیره تا ببینه آیا سیستم درست پیاده‌سازی شده یا نه، و جهت دیگه هم این که از نظر امنیتی و آسیب پذیری، کدهای نوشته‌شده رو سنجیده. برای این کار برای هر سناریو، از یک متخصص امنیت خواسته تا اتک‌های ممکن رو تعریف کنه و سپس اونها رو سیستم‌های خروجی تولیدشده اجرا گرفتند تا ببیند وضعشون چه طوریه. پس در نهایت کد خروجی LLM‌ می‌تونه سه وضعیت داشته باشه: اصلا درست نباشه، درست باشه ولی آسیب‌پذیری امنیتی داشته باشه و در نهایت هم درست باشه و هم عاری از آسیب‌پذیری.

نتایج LLM‌های مختلف هم روی این بنچمارک که بهترین‌‌شون که o3-mini بوده باشه حدود ۶۰ درصد از تسک‌ها رو تو فانکشنال تست پاس شده که البته نصف همین رقمش هم دچار آسیب پذیری امنیتی بودند و یعنی o3-mini روی این بنچمارک سرجمع فقط ۳۵.۲ درصد تسک‌ها رو براشون خروجی درست و عاری از آسیب‌پذیری تونسته تولید کنه (البته یک ablation جالبی که زده این بوده که اومده در پرامپت‌دهی به LLM بهش نکات امنیتی رو گوشزد کرده و همینجوری تونسته درصد کدهای درست امن تولیدشده رو بیشتر کنه) البته o3-mini نه بهترین در تولید کد بوده و نه بهترین در امنیت، بلکه شبیه وزنه‌بردارها تونسته در مجموع بهترین باشه. در واقع ممکنه یک مدل در تولید کد عملکرد خوبی داشته باشه ولی در امنیت اون کد نه و بالعکس.

اما اکسپریمنت‌هاش از مقایسه اونوری، یعنی عملکرد روی فریمورک‌های مختلف، هم مطابق انتظار این شکلی بوده که LLM ها روی فریمورک‌هایی که شهرت و محبوبیت کمتری دارند و البته اونایی که برای راه‌اندازی یک http server نیازمند پیاده‌سازی در چند فایل هستند عملکرد پایین‌تری دارند.

در کل، از این پس احتمالا بنچمارک‌های انتها به انتهای بیشتری حول و حوش موضوع خودکارسازی توسعه نرم‌افزار خواهیم دید. روزهای جالبی در انتظاره البته نه برای برنامه‌نویس‌ها

لینک:
https://baxbench.com/

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/362

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

NLP stuff from sg


Telegram NLP stuff
FROM USA